Brain-Inspired Learning Framework to Bridging Information, Uncertainty and Human-Machine Decision-Making for Decoding Variance in Pipeline Computational Models

Zi Zhang, Hong Pan, Matthew Pearson and Dr. Zhibin Lin Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108-6050

Main Objective

This study is to develop and implement new learning framework to bridge information, uncertainty and human-machine decision making to meet pipeline environments that are becoming increasingly complex and demanding because of the high uncertainty, and heterogeneous data.

Project Approach/Scope

The current work mainly focuses on the variance widely ranging from material/structural integrity (e.g., damage types, damage size and morphology) using experimental and numerical studies through different datasets:

- Simulation of different scenarios with damage
- **Experimental validation and verification**
- Characterization of damage features
- Identification of unique features

(Multiphysics software COMSOL[®])

 $|/|/| \rightarrow$ Test setup

Samples with damage types and size

Results to Date

inclusion The of damage/cracks experienced İn the structure (see Fig. 1) into the model provided change of signals in time-domain (DWT), frequency domain (FFT), or time-frequency

Signal

• work on the data on specified mechanical damage (type and size) will be analyzed as training features, while the lab data are used for calibration and training sets.

Acknowledgments

This project is funded by DOT/PHMSA's Competitive Academic Agreement Program through Agreement 693JK318500010CAAP

Public Project Page

Please visit the below URL for much more information:

https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=788

Figure 3. Signals and FFT in three locations

